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ABSTRACT

The exact solution, the Born approximation, and its variational improvement are
obtained for the scattering of electromagnetic waves from a random ensemble of
systems, each consisting of two Rayleigh cylinders. The cylinders are parallel, of in-
finite length, and of equal radius. Their separation varies randomly among ensemble
members except that the cylinders cannot overlap. The intent is to test a recently de-
veloped vector stochastic variational principle. The exact solutions are obtained for
the average differential scattering cross sections of both the transverse electric (TE)
and transverse magnetic (TM) fields relative to the cylinder axes with normal plane
wave incidence. The corresponding variational approximations are obtained using a
recently reported computational alternative to the more familiar dyadic Green's
function solution. They are in essential agreement with the exact TE and TM solu-
tions, whereas the Born results are not. In particular, the variational results accur-
ately account for multiple scattering, which is significant in the exact TE, but not
TM, solution, and also account for the difference in geometric polarizability be-
tween the two solutions.
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1.0 INTRODUCTION

The potential advantages of variational approx- dary conditions. Specifically, we have derived'-' gen-
imations in scattering problems are well known.'" eral vector stochastic variational expressions for the
First, by virtue of variational invariance, errors in the statistical moments and probability density functions
initial trial approximation for the fields on or within of arbitrary polarization components of the vector
the scatterer do not lead to corresponding first-order scattering amplitude, 4i, • T and the differential scat-
errors in the calculated far field scattering amplitude tering cross section W6, T 2. These invariant ex-
T. Thus, good initial approximations can lead to im- pressions are applicable to random scatterers with ar-
proved results, and estimates of the accuracy of vari- bitrary inhomogeneous and anisotropic permittivity,
ational results can be made in some cases. 4 Because conductivity, and permeability.
the usual Schwinger variational form for the scatter- Of present interest is the extent to which the gener-
ing amplitude is a ratio of integrals,2 difficulties in al vector stochastic variational principle, by virtue of
computing the statistical moments of this ratio first-order error cancellation, can approximate polar-
resulted in very limited application of this method to ization-dependent interactive phenomena, i.e., inter-
random scattering problems until the mid-seventies. ference and multiple scattering, even if the initial
In 1977, Hart and Farrell' demonstrated that, for ar- field approximation does not. This question is ad-
bitrary scatterer statistics, the integrals whose ratio dressed in this report by calculating the exact solution
comprises the deterministic variational expression to a random scattering problem exhibiting these ef-
can be averaged individually and recombined to form fects and then comparing the result with the corre-
an invariant expression for the average scattering sponding Born approximation and its variational im-
amplitude (T) . This form, i.e., (T) = (N) provement.
X (N 2 )1(D), is inherently simpler to evaluate than Our approach is based on a similar earlier
the direct average of the deterministic expression (T) analysis.' In an effort to examine the accuracy and
= (N, N2 /D), where N1, N 2, and D are integrals in- efficacy of the original scalar stochastic variational
volving the fields at the scatterer. principle,4  Gray, Hart, and Farrell' calculated

Hart and Farrell demonstrated this result for closed-form variational and first-order perturba-
(T)and ( ITI 2 ) in the case of scalar wave scattering tional approximations to transverse magnetic (TM)
from objects or surfaces with homogeneous boun- wave scattering from a classic, random, perfectly
dary conditions. An extension was made recently5 6  conducting surface' on which Dirichlet boundary
to vector wave scattering and inhomogeneous boun- conditions are satisfied. The surface consisted of

many parallel, nonoverlapping, hemicylindrical pro-
trusions on an infinite plane. The hemicylinders were

'L. Cairo and T. Kahan, Variational Techniques in Electromag- of equal radii, infinite length, and random separa-
netism. Gordon and Breach, Science Publishers, Inc., New York tion. The variational approximation for ( I TI 2 > was
(1965). found to include the sum of independent hemicyl-

2P. M. Morse and H. Feshbach, Methods of Theoretical Physics, inder scattering contributions as well as a correction
Parts fand l, McGraw-Hill, New York (1953). term proportional to the fractional area of the plane

3D. S. Jones, "A Critique of the Variational Method in Scatter-
ing Problems," IRE Trans. Antennas Propag. AP.4, 297-301
(1956). 7E. P. Gray, R. W. Hart, and R. A. Farrell, "An Application of
R. W. Hart and R' A. Farrell, "A Variational Principle for a Variational Principle for Scattering by Random Rough Sur-
Scattering from Rough Surfaces," IEEE Trans. Antennas Pro- faces," Radio Sci. 13, 333-348 (1978).
pag. AP-25,708-710(1977). 8J. A. Krill and R. A. Farrell, "Comparisons Between Varia-

Si. A. Krill and R. H. Andreo, "Vector Stochastic Variational tional, Perturbational, and Exact Solutions for Scattering from
Principles for Electromagnetic Wave Scattering," IEEE Trans. a Random Rough Surface Model," J. Opt. Soc. Am, 6$,
Antennas Propag. AP-28,770-776 (1980). 768-714 (1979).

R. H. Andreo and J. A. Krill, "Vector Stochastic Variational 9V. Twersky, "Multiple Scattering of Radiation by an Arbitrary
Expressions for Scatterers with Dielectric. Conductive. and Planar Configuration of Parallel Cylinders and by Two ParallelMagnetic Properties," J. Opt. Soc. Am. 71,978-982 (1981). Cylinders," J. Appl. Phys. 23, No. 4, 407414 (1952).
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covered by the hemicylinders. Comparison of this re- For normal incidence and arbitrary incident polar-
sult with first-order perturbation theory showed a ization, the scattered field can be written as the
discrepancy that persisted even when the Rayleigh superposition of the (decoupled) TM and TE solu-
limit was taken. Krill and Farrell' were able to obtain tions. "  The exact TE and TM solutions for the dif-
the exact solution for the simplest multiple scattering ferential scattering cross section are obtained in
case for this perfectly conducting surface, consisting Chapter 2 for two identical dielectric Rayleigh
of only two randomly separated, nonoverlapping, cylinders with axis separation greater than their di-
Rayleigh hemicylinders. They showed from the exact ameter. In Chapter 3, these solutions are ensemble
solution that the variational result accounted for averaged over a separation distance subject to the no-
multiple scattering whereas the first-order perturba- overlap constraint. Chapter 4 presents calculations
tion approximation did not, thus offering an ex- using the vector stochastic variational principle to
planation for the discrepancy, improve the Born approximation for random cylin-

The present study differs from the earlier one * as der scattering and arbitrary polarization. For this
follows. First, we are testing the recent extension of simple random scattering problem, the average of the
the stochastic variational principle to (vector) electro- deterministic expression could also be calculated and
magnetic wave scattering from objects or surfaces is presented. In Chapter 5, the Born and variational
with generally nonvanishing boundary conditions, results are compared to the exact TE and TM solu-
The scattering model to be considered involves di- tions, with particular attention to the accuracy with
electric cylinders. Because there are differences be- which the approximations account for polarization
tween the exact transverse electric (TE) and TM fields effects and multiple scattering. It is concluded that
(including interactive effects), we will investigate the the variational approximation accurately describes
extent to which the vector variational principle ac- both the polarization dependence and the multiple
counts for these polarization phenomena. The model scattering found in the Rayleigh limit of the exact
consists of an ensemble of systems, each of which solution.
contains two dielectric, parallel, Rayleigh cylinders
with infinite lengths and equal radii. A plane wave is
incident perpendicular to the cylinder axes and makes
a fixed angle relative to the plane in which the axes
lie. The cylinders are randomly separated but hard; "'H. C. Van de Hulst, Lixht Scattering by Small Particles, Wiley,
i.e., they cannot merge or overlap, and their refrac- New York, pp. 297-301, 306-307 (1957).
tive index goes discontinuously to the value I at their G. Olaofe, "Scattering by Two Cylinders," Radio Sci. S, No.

surface. Ii, 1351-1360(1970).

8
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2.0 EXACT TE AND TM SCATIERING CROSS SECTIONS

Figure 1 presents the scattering configuration in differential scattering cross section ITI2 , where T
which two parallel, infinitely long cylinders, labeled sei • T, for arbitrary polarization 4. Because the
cylinder + I and - 1, are illuminated by a plane wave plane wave is incident normal to the cylinder axes, ar-
incident normal to their axes, which are located at bitrary polarization can be treated as the sum of
V" and V-1, respectively. The cylinders have decoupled TE and TM field contributions. The exact
relative refractive index m and radius a, and their TE and TM solutions will be obtained for the
axes are along . The incident plane wave has electric Rayleigh limit" mka and ka < < 1.
field E, = A4F exp(tk, • r), where k, is the wave vec- The exact solution for scattering from two dielec-
tor, A is the amplitude, and i, is the polarization vec- tric cylinders with arbitrary, but fixed, axis separa-
tor. The wave vector is in the direction 1, i.e., k, a tion - _ -" has appeared in several
k, and forms a fixed angle 0 relative to the plane in sources. 9"'1 " As in our two-hemicylinder solution,'
which the cylinder axes lie. We are interested in the we again follow the procedures described by

Olaofe,'"' which are based on scalar wave functions
related to the TE and TM fields.'0 First, the wave
function €, used to describe the total field external
to the scatterers, is written as the sum of an incident
plane wave and scattered wave contributions from
each cylinder, i.e., 0 , , + ,. The incident

+ . plane wave is expanded in a Bessel series in terms of
A¢ / coordinates centered at thej-th cylinder axis, wherej

-1 . 2 + I or - I (Fig. 1). The scattered field from each
0(+1) t" individual cylinder is expressed as a sum of cylin-

r/ drically outgoing waves centered at that cylinder with
/a as-yet undetermined coefficients. Finally, the addi-

tion theorem is applied that expresses the outgoing
Cylinder +1 waves from one cylinder in terms of coordinates cen-

tered at the other cylinder. The resulting equation for
/the external wave function, expressed in the coor-

dinates centered on thej-th cylinder, is"
• /f

A,; e'o~j) [rw'R (kr~')
A Cylinder -1

+ b,H.(' (kru') + J. (kr )(. -l)n

19s/ A A 0

'L

12G. Olaofe, "Scattering Cross Section for Two Cylinders," IEEE
Trans. AntennaPropag. AP-IS, No. 6, 823-325 (1970).

Flire 1 - The scattering problem consists of two 3V. Twersky, "Scattering of Waves by Two Objects," Eketro-
nonoverlapping, parallel dielectric cylinders Illuminated by
a plane wave normal to their axes and forming a fixed angle magnetic Waves, R. E. Langer, ed., The University of Wiscon-

with the plane In which their axes lie. The Infinite-length sin Press. Madison, pp. 361-389 (1962).
cylinders' separation r = -_ - is a random '"N. Zitron and S. N. Karp, "Higher-Order Approximations in
variable, and TE and TM scattering cross sections are Multiple Scattering, I, Two-Dimensional Scalar Case," J.
calculated in the Rayleigh limit. Afath. PAys. 2, No. 3,3.94402 (1961).

9
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wherej' is - I whenj is + 1 and vice versa; equals f Jb0M = -coTMW, (3)
or n, respectively, when j equals - I or + 1; and w,
= exp [ik. ° ' cos 1. The factor w, accounts for the where C.' iw(e' -)(ka/2) 2, and
phase shift of the incident wave that occurs when the
coordinate origin is translated to the axis of cylinder icTE

j. The sum over the first term in the brackets is the bE - . [we" + pw, e*11 ], (4)
incident plane wave, the sum over the second term is I - P2

the scattered wave from the j-th cylinder, and the
doubl, sum represents that from the j'-th cylinder, where c[E = -iw(ka2) 2(m 2 - l)/(m 2 + 1), and the
Het ! ie incident scalar wave function is assumed to interaction parameter p = c'H 2(k.0 appiars in both
be a pine wave of amplitude A 0. This amplitude can the exact and the variational solutions for the TE
be related'0 to the corresponding amplitude A of the case. We note that in the Rayleigh limit of the two-
incident plane wave electric field. Because the ampli- cylinder problem, multiple scattering is expected to
tude of the incident wave cancels in the final expres- be significant only when the cylinders are in proximi-
sion for T (c.f. Eqs. 6a, 6b, 40, and 41), it will not be ty. Observe in Eqs. 3 and 4 that the only variable that
discussed further. has such a characteristic is p, which appears only for

An expression for the coefficients in Eq. 1 can be the TE case.
obtained by applying the appropriate boundary con- Using the standard relationship' ° between the
ditions for the fields at the cylinders' surfaces, 1"1 fields and the wave function, one can show that the

scattering amplitude definition,

A, =-c. [inwe"'O + (- 1)"

X1'. (2) A, r. T5

= 0, ~,2, ... , :Laoresults in the following TE and TM amplitudes:

where c. is the n-th order scattering coefficient for a TTM ,boTM + .,boTMe -i*k, - ) e- m (°,
- P)

single cylinder.'"' These latter coefficients will be (6a)
designated by cl and c T' for the TE and TM solu-
tions, respectively, where it is recognized that

For nonoverlapping Rayleigh cylinders (r > 2a,
mka < < 1, and ka< < 1), it can be shown"" , " that 0(+" O- z = 65 - '6 0,
the infinite set of coupled equations in Eq. 2 may be
truncated. This conclusion holds even in the limit e _ 1" , and
that the cylinders touch, i.e., r - 2a(l + 6,), where
5 - 0. Series convergence considerations and ex- r'" r'-" = -cos (0, -
amination of c, reveal' 4' 3 that, in the Rayleigh
limit, the ,b, coefficients that are lowest order in ka and
correspond to n = 0 for TM fields and n = 1 for
TE fields. Moreover, the series in I may be cor-
respondingly truncated so that TTE = [_,B + +,Beie- co°  d)}e ik' os,5-d

(6b)

where B = i(,b exp(-i. 0)) -b[

exp(+ i(O, - 16)), and we have used a coordinate sys-
tem centered on the origin in Fig. i. The cross sec-

Ye. A. Ivanov, Diffraction of Eletromagnetic Waves on Two tions IT"m I and I7n " are readily obtained by tak-
Bodies, Nauka i Tekhnika Prss, Minsk, pp. 66-9 (1968) ing the absolute square of Eqs. 5 and 6 and inserting
(English translation). Eqs. 3 and 4, respectively.

10
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3.0 ENSEMBLE AVERAGES OF EXACT SOLUTIONS

Ensemble averages of the exact cross sections over between the cylinders caused by their nonoverlap
random cylinder separation t will be evaluated in the condition.
! manner of Krill and Farrell.! The cylinder axes point The TE case is treated by noting that performing
in the z-direction and lie in the plane that forms an the absolute square of Eq. 6b and applying Eq. 4

* - angle 3 relative to the incident wave. The axes are lo- leads to terms that are of the form
cated within the limits - L/2 <_ tJ < + L/2, j =
+ 1, and are constrained not to overlap, i.e., t > 2a.
The two-center probability density function is f t p"P* Cos '(9)

rif r > ,d where (n, 0 = 0, 1, and 2, y = [k cos 0, k cos 0, k(cos
(L - 2a) 2 13 * cos 0), or 01, and the interaction parameter is,

p ,,L/2 <- < + L/2, again, p - cH 1'(kt), which approaches (Ma:/)
L 1 - +for small kt where M m (m 2 - l)/(m2 + I). These

j :- 1 averages are evaluated analytically in the same man-
ner as in Ref. 8 (see Eqs. 18 and 20a of that reference)

0 otherwise to give

:. V ,, f~/2 y(, l

The average ( ) of an arbitrary function g(") that (f() = (-) dy, (10)
depends only on r - "can be shown to
be'

where y - t'-Ma/. The validity of Eq. 10 can be
1 rL verified by demonstrating' that it differs from Eq. 9

WD) 2.,2u (L - [g() + g(-?)]dt, by terms that are higher order in ka. Equation 1Ocan
(7a) be evaluated analytically 6 to give (to first order in ,,

and second order in M)

which, in the limit L - oo, goes to'

1. PM4, n + =I

(g(.)= L (1 - r/L) [g(r) + g( - ?l] d, (AM= W2/48, n+(e=2, (11)
L 2... (7b) 0, n + I'= 4

provided this limit exists. Applying Eq. 7 to average
tiusing ooti where we have assumed that in = I + 6 with 6 < <
the T onss3 1, so that M < < I. The terms that are second order

< 1T in M are retained because the inaccuracies of the
1- ] "  (ITI2 T > -- (ka)4 (m" - !)2(I - v), (8) stochastic variational results first appear at thatorder.

The exact result for ( IT, 1I ) r in the limits (mka.
Ii ka, and M) - 0 may now be expressed by applying

where the subscript E denotes the exact result, and ,
w 4e/L is the packing density. The term linear inP
comes from the factor <w, w, ) in the absolute square 161. S. Gradshteyn and I. M. Ryzhik.Table of Integrals. Seses,of Eq. 5 and represents mean destructive interference and Produas. Academic Press. New York (1965).

IIA
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Eqs. 11, 9, and 4 to the average absolute square of As in the TM case, the (I - i) term describes scatter-
Eq. 6, giving (to the fourth order in M) ing by two independent cylinders, modified by inter-

ference effects (the - v term). The remaining terms in
Eq. 12 are due to multiple scattering.IT 1 2(a))W cos:0,(l - )

- My cos 0, cos (20 - 0,)

+ M,24~ [2COS20, + COS2 (203 - 0,)]

(12)

1I
12
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4.0 VARIATIONAL AND BORN APPROXIMATIONS

Vector stochastic variational expressions were re- an intermediate result that the stochastic variational
cently derived for general conducting, dielectric, and calculation improves. We are also able to evaluate
magnetic scatterers. 56 In order to investigate the ex- the direct average of the deterministic variational ex-
tent to which these expressions can account for polar- pression for this simple random scattering problem in
ization and interactive scattering phenomena, a the limit of nearly transparent Rayleigh cylinders,
stochastic variational approximation to the two-Ray- where m - 1. The various approximate solutions are
leigh-cylinder random scattering problem addressed compared with the exact solutions in the Summary
in the previous sections will now be calculated. The and Conclusions.
Born approximation for this problem is computed as

4.1 Variational Formulation for Infinite Cylinders

The variational expressions derived in Refs. 5 and where cs denotes integration over the scatterer cross
6 are for scatterers localized in three dimensions in section, E, is the incident plane wave with polariza-
which the scattered field is a spherical wave in the tion i, and propagation direction k,, the two-
far-field limit. For the infinite-length, homogeneous dimensional vector r = x. + yf, and the two-
cylinders of current interest, the scattered field E,, is dimensional dyadic Green's function is
a cylindrical wave in this limit and is expressed as E,,
- A Te'o / 1r, for r, > > '(see Fig. 1). An integral
wave equation for two-dimensional scatterers may be G((,?) - PVII + V V/k 2 ]
obtained from the three-dimensional results' 6 by rec-
ognizing that E, E, and U k2(m2 - i) are all inde-
pendent of the z coordinate in Fig. I for a normally x Ha (kR2 ) - L6(- ')/k . 5)
incident plane wave. Using the relationship" 4

Glr, r'j -i dhelh' - z I H 4 ),(KR2) Here I is the three-dimensional unit dyadic, H, "

-i (13) (kR 2 ) is the 0-th order Hankel function of the first

kind, PV indicates principal value integration when
with k

2 
= / + h

2 
and the first term in Eq. 15 is in the integrand, and i is

the depolarization dyadic that depends on the shape
/((x-x)I + ( of the infinitesimal e,,-luded region used in com-

puting the PV integral. (We note that the total in-
tegral involving &'I is independent of this shape.")l

one can integrate the three-dimensional results' 6  tea filvn 0'eaisepende of thi shaer o1
overInc cordinte o obainIn the far field, because r and ' are never coinci-

overmez coordnate to obtain dent, Eq. 14 can be used to express the scattering

amplitude, T = J, • T, as
EM = E, + G ,r(l'). [UE(Q')] dS',

(14) T= NJ , (16)

'7 L. B. Felsen and N. Marcuvitz, Radiation and Scattering of
Waves, Prentice Hall. Inc., Englewood Cliffs, New Jersey, p. 18A. D. Yaghjian, "Electric Dyadic Green's Functions in the
635 (1973). Source Region," Proc. IEEE68, 248-263 (1980).

13
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with where

N , --= [1- S UE(,')] e , NZ(e,.k,;e^,kj N, k,; kj (19)
a (17)

where i, specifies the scattered wave polarization of and
interest, k, is the unit vector in the scattered direction
that makes an angle 0, relative to the incident direc-
tion in Fig. I, and integration is over the cross-sec- D dS' Ulg(r') E(t') - . dSj dS' [UQ1)]
tional area of the scatterer. s c

The procedures outlined in Refs. 5 and 6 may be
applied to Eq. 14 to derive a stochastic variational
principle for T. As for the three-dimensional case, • (L/-(")1. (20)
this results in an expression of the form

1 ( IN, 12)(1 IN2 12

( ITv) =1"6 <ID1'> (18)

4.2 Evaluation of the Integrals N,, N2, and D

We encountered calculational difficulties in our at- and
tempts to evaluate the double surface integral in Eq.
20 for two dielectric cylinders. Consequently, we em- i
ployed19 methods analogous to those used by Yagh- D3 - dS U(0) . df' [UE(')
jian" to obtain an alternative expression in which D 4k 2

is reexpressed as
x I[V'H,0)(kR,) x I]

D = -D 2 +D 3 , (21)

+ [V' x UE(')l x iH0'1(kR,) , (24)
where

where the contour integral in D3 is over the boundary
, [r of the scatterer cross section (cs), and A is the out-

D) = dS'UE(') 1(1 + U/k 2)E(L')], wardnormalat the boundary. AlthoughEq! 21 is not
(22) as compact as Eq. 20, its evaluation is straightfor-

ward because all of the singularities are integrable.
i dS For Rayleigh dielectric cylinders in which ka < < I

dS' ( UQ I- (v' x V' and mka < < l. it is appropriate to approximate thek d total original and adjoint fields appearing in the in-

tegrals of the variational expression by the cor-
responding fields that would occur in the absence of

X (UE(r'))IHot1)(kR2), (23) the cylinders, i.e., by the original and adjoint plane
waves ' 6 E m Ai, exp k, -• 0and 1 - Ai, exp (- ik,

S1), respectively, where r - r - zi. Using these trial

approximations, one finds

19J. A. Kril, Rt. H4. Andreo, and R. A. Farrell, "A Computational N, N2 .~i -,km 1) el. t' dS',
Alternative for Variational Expressions that Involve Dyadic NI N2  e' k2 (m 2  1) ei  d
Green Functions," IEE Trms. Antennas Propag. AP-3S, -'

1003-00o (1982). (25)
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i
where the sum is over cylinders j I * 1 and the in- and
tegral is over the cross section of the j-th cylinder.
Further, we have used the definitions a - k, - k,
and U = k2(m2 - 1)for t'ecs, and U = 0for = i 2k2(m2 1)2 - j dse "
r'ots .The integral is evaluated by first expressing the =4
coordinates for points interior to the cylinders as
= & + r, where J'u = [It" cos 0 + fi sin 0 is
the position of the j-th cylinder axis (see Fig. i)tandr di''. [i e', fj x IV'H (kR 2) x !l
is the field point within thej-th cylinder relative to its r
axis. Applying this transformation to Eq. 25 results
in

N, A(i, ,)k2 (m2 
- I)a2S , (26a)

where r, denotes the circumference of the j-th

where cylinder. By applying the coordinate transformation
r, = r'u + r and evaluating the double curl in Eq.
28, D2 reduces to

S, '  u  =el- ( ( + el ,

(26b) D, =-Ak(ml - 1)2(i, • )
4

As x ~i ik, ) -e -U)

and we have used the fact that

2J, •) j IS dS'e•- ' 'e- , " H'(kR2)

e' 'dS =ia' I I jTa. (30)

since f .k, = 0. By applying the addition theorem

Applying these trial approximations to the denom- (e.g., see Watson °) for the cases i j and i j in
inator integrals, Eqs. 22 through 24, results in Eq. 30 and evaluating the resulting integrals in the

Rayleigh limit, Eq. 30 is found to be proportional to
(ka)'. This should be contrasted with the other in-

D= A2 (i• I,)k 2 
(Mi - l)m' tegrals N1, N2 , D,, and (as will be shown) D3, which

El, are of the order (ka)2 . Thus, D, does not contribute
to the variational calculation in the Rayleigh limit.Evaluation of the D. integral, Eq. 29, remains.

x el- dS' = mN 1A (27) This integral arises from the discontinuity in refrac-
J 'tive index at the surface of the scatterer and vanishes

in the case of soft scatterers. " (Of course, D, would
2 Mbe more complicated for soft scatterers.) We will

D2 A Ak( dS show that, for hard scatterers, D, accounts for all the
4 A (m I) multiple scattering and contributes to the polariza-

tion dependence in the variational approximation.
We rewrite Eq. 29 in a form more convenient for cal-fIS'e-', r, culation by using a vector identity and by translating

C"j the cylindrical coordinate systems. This gives

[v' X V' x (i ek "  X H,')(kR2), 200. N. Watson. A Treatise on the Theory of Bessel Fun't ion,
2nd ed., Cambridge University Press, New York, Chap. XI

(28) (192).
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U~~t~tU) Mtttu

a 2'& -)2 o (0 - eo'

(R2wedr a c ui

whni , • v-(I.)2) - ks(4) p)J

+ f. ;jkHo"')(kR2)]It=.a, (31)^

where ;is the radial cylindrical unit vector. When i
= j, R2 = [ a + t2 - 2at' cos (0 - 0')]1", and
when i * j, R, = f[/' + a' - 2Pa cos ()-p]'
whereP = [e + t,2 - 2~' cos(v - 4' .
These geometrical parameters are illustrated in Fig. Figure 2 - Illustration of parameters that relate to R2 us-2 i er Ing the cosine law. When i = j, t and t' are within the2. The addition theorem is applied once for i = j and same cylinder; however, when i * j, t and t' lie in different
twice for i * j. and the gradients on Ho(kR 2) are cylinders.
then taken. The resulting series of integrals is
straightforward to evaluate, and upon retaining
terms that are the lowest order in ka, we find

where

D3 =A 2 r(ka)2 (m2 
- 1)

S2 w i) e's e"

X (M
2  1)[(j •)(j • 3)/2 - E•] S, e" (e , + ek' (32b)

- -8(in2 
- I Xka)H 2 "(kb(v "and S, is defined in Eq. 26b. Observe that (ka)4

H ')(ki) in Eq. 32 is of the same order as cp in the
exact TE solution Eqs. 4 and 6. For " - 2a, this coef-

S[j sin (20) - cos (2 ) IS2 3, (32a) ficient is of the order (ka)2 .

4.3 Evaluation of the Averagm

The integrals INl 2 , IN2 12, and ID, II depend on Using Eq. 7 to average these integrals over random
the cylinder separation tthrough the phase term (but nonoverlapping) separations, we find

IS,1 2 2 + 2 Real (e-"r). (33) (IN 1 I ) 
= I41 222 (kn)4(m2 

- 1)2(. • ;)'(I - )

(34)
16



THE OHNS HOPKINS UNIVRSITY
APPLIED PHYSICS LABORATORY

LAUREL. MARVL O

and, from Eqs. 25 and 27, to first order in v,. These results lead to

(IN 12) = < IN, 12 ) = ID 12)/(m' A2 ). (35) ( ID12) = A 4z(W' - I)(ka)'4211 - a)[(m -

The final step needed to obtain ( IT, I ) from Eq. (U. )( , ) :
18 is to complete the evaluation of (IDiZ). From x (+ ('
Eq. 21 and the fact that D2 does not contribute in the2 /

Rayleigh limit,

ID > ID, I 2) +2Real(D|*D,> + (ID,1 2 >. x (..;)(, . ) + (4
(36)

The averages appearing in the latter two terms of this V
equation can be expressed in the general form +

[(O)= ((ka)"2 "H"(kflH,2 1 (kocos(y') - ,( . •Isin(2M - 9cos(20)]

L m- 1: ( " I O --)(e,-)I12

(39)
x .. -,, k o- d'

The final step is to insert Eqs. 34, 35, and 39 into
(37) the variational expression Eq. 18. Expanding the re-

as can be shown by direct substitution of Eqs. 31 and suit in powers of r and retaining the first-order term
27 (with Eq. 26) into Eq. 36. In particular, Eq. 37 yields
must be evaluated for the cam n + f - (0,1,2) and-
= O, kcos0,kcos (, - ,ork(cosi cot(0, -
0))]. In the Rayleigh limit, the evaluation of Eq. 37 (IT, 1 )" = 8 (ka)'(m - (- r) (40)
can be accomplished using procedures anaoous to
those used to obtain the average of Eq. 9,0 with the
result and

IT, I")T1 = - (ka)'At 1cos' ,I -
2

((ka) 4 + e = O, =0

L -v(ka) 4  n + r=o, 0 - Mrcos0, Cos(20 - 0,)
(f( )) = (-l)m(iW/ w)(ka)' n + e= I

(i)"-"(v/33r)(k ' + I = 2 - r
2 cos' (20 - 0, (41)

(38)
wherehM - (m - 1)/(m" + I); and we have used
the facts that

*An alternate evaluation procedur . pital's rule, is
given in Ref. 21. This alternative c. c d to evaluale the
averae of Eq. 9. for TM waves

"E. P. Gray, I. W. Hart, and R. A. Farrell, A Verietion Ap- C, - (42a)Po km-e for ie &cvtteft of S lalr Wa by Stodatic v for TIE waves

Sw)ku, JHU/APL TO 132211979).

17
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and where

for TM waves ,-= .-l H,(kn cos (213 0,) S2/S

l-xsin0, + ;cos, forTE waves Cos (48)

(42b)
It should be noted that DI does not depend on M and

This completes the evaluation of our vector is of order (ko) except when the cylinders are nearly
stochastic variational principle. Next, we obtain the touching where 3) is of order unity. Using Eq. 47, we
noninvariant Born approximation arl the direct can write the direct average of Eq. 46 as
average of the Levine-Schwinger dete: .,inistic varia-
tional result.

The noninvariant Born approximation ( IT, 12 ) Is
obtained by using the plane wave trial function in the (IT- I->
expression'

( I ) = ( IN, 12 /(16IA V). (43) ( IN,/AI 2 )/16 for theTM case

(49)

From Eqs. 34 and 42, the TE and TM solutions are - IN/I(A(m 2 + 1))112

-m(r,+M 2 (!'.> for the TE case

(IT, 12 )TM = - (ka)(m 2  
- l)(I - )

(44)

and where IN,/(A (,- + 1)) 12, r,, and . are each pro-portional to M and terms of order ,k and higher

2 4have been neglected. In particular,
(IT, I te = - (ka)'(m 2 

- 1)2 COS2 ,(1 - a).

(45)
The standard Levine-Schwinger form of the varia- r= (ka) M' cos 0, cos (23 - 0,)

tional principle is 4
x [H,"'(kf)SS. - H121(k )S,S* (50)

IT, = =2 IN, 12 IN2 I
z

161D1' (46)
and

For nearly transparent Rayleigh cylinders, the
denominator integral, D, can be expanded in powers
of M. In particular, recognizing that D2 = 0 in this r. r' AfM (- cos" 12/ - 0)
limit and combining Eqs. 27 and 32, 2 '

x (ka) H,'"(k ,S, "

D = D, + D,

j N 1A for the TM case

,N ( mn + I )[I + MD] fortheTEcase 2 )2 ss 2.vs-J (51)
,- (47) - (ka)A(-.,'"(kr)

I
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f We note that S,*S, and S2/S~depend on the cylin-
Sde' positions only through the axis separation t'.ITherefore, the averages appearing in Eq. 49 can be

evaluated using Eqs. 37 and 38. The result is

(ka)'(m2 -lI - ,) fortheTMcase

r
[cos - o, (! p)(52)

(lITt5 12> - (ka) 4A9f cO2. - P)

- Mrcos 0, cos (2ft - 0,)
p

+ MA 8 cos2 (2, - O) j for theTEcase

I.

!1
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5.0 SUMMARY AND CONCLUSIONS

The recently developed vector stochastic varia- lecis the geometric polarizability (resulting from (he
tional principle for electromagnetic wave scattering cylindrical shape) in approximating the fields inside
has been reexpressed in terms of the scalar Helm- the cylinders. Second, as expected, the Born approx-
holtz-Green's function and evaluated for a test case imation includes interference but does not account
of two randomly separated dielectric cylinders. This for TE multiple scattering.
study examines, for the first time, the extent to which The stochastic variational improvement (Eq. 41) of
this principle can account for polarization and inter- the Born approximation for this TE scattering cor-
active phenomena even though the approximation rects for the geometric polarizability. In addition, it
that it improves does not. This has been accom- contains a multiple scattering contribution that is
plished by calculating the exact solution and compar- correct through the lowest-order term in the variable
ing the result with the variational approximation. M, i.e., through MI. Thus the stochastic variational
The two randomly separated cylinders have parallel correction factor IA 12 ( IN, 12 I)/ IDI2 ) significant-
axes and are infinitely long. The cylinders are not ly improves the Born approximation to give the po-
allowed to overlap, i.e., they are hard, and their di- larization and multiple scattering dependences ac-
ameter is small relative to a wavelength. The varia- curately (even though these effects are missing from
tional and exact results may also be compared with the simple Born trial field).
the Born approximation, which is obtained as an in- The direct average of the Levine-Schwinger deter-
termediate step in calculating the variational result ministic variational expression was obtained in the
when simple plane wave trial functions are used. limit of nearly transparent Rayleigh cylinders. Thai

Comparison of Eqs. 8, 40, and 44 indicates that approximation also agrees with the exact result
both the Born and the stochastic variational approx- through the terms of order M'.
imations give the exact result for the average TM dif- As with the stochastic variational principle, the MI
ferential scattering cross section. As the exact TM so- term is incorrect. (This discrepancy was uncovered
lution contains no multiple scattering, this conclu- subsequent to the publication of Ref. 22.) Neither
sion is not surprising, variational result reproduces the cos" 0, dependence

Comparison of Eqs. 12 and 45 indicates significant found in the M term of the exact result, and both
discrepancies between the Born approximation and give an incorrect value for the coefficient of the
the exact result for the mean TE cross section. First, cos 2-(23 - 0,) term.
the Born approximation accounts for the angular de-
pendence of the TE solution but does not give the
correct refractive index dependence in its amplitude, 22J.i~e. (m2- 1 / 8 or te Brn vrsusM?/ [iJ- A. Krill, R. H Andreo, and R. A. Farrell, "Variational Calcu-
i.e., (in2 

- 1)1/8 for the Born versus Af/2 =e(, 2  
laions of Electromagnciic Scaltering from Two Randomly

- l)/(m2 + 1) 12/2 for the exact solution. This dis- Separated Rayleigh Dielectric Cylinder,," J. Opt. Sot'. Am. 73,
crepancy arises because the Born approximation neg- 408-410 (t983).
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